"Расплетая радугу" Ричарда Докинза. Отрывок из книги

01 апреля 2021
ИЗДАНИЕ

Глава 4. Штрихкод в эфире (отрывок)

Измерим радугу, сочтем —
Не сомневаюсь в том.
Но мост, связующий влюбленных,
Не выдаст нам своих законов.

Эмили Дикинсон (1894 г.)

"В эфире" для современного человека означает "по радио". Однако радиоволны не имеют отношения к эфиру — ни к гипотетическому, ни к химическому: это невидимое излучение с большими длинами волн. А вот звуку нужна среда для распространения. Эта глава будет о звуке и о других медленных волнах, которые тоже можно расплести, как радугу. Звуковые волны распространяются примерно в миллион раз медленнее света (или радиоволн), будучи немного более быстрыми, чем "Боинг-747", но уступая по скорости "Конкорду". В отличие от света и прочих разновидностей электромагнитного излучения, которые лучше всего распространяются в вакууме, звуковые волны нуждаются в материальном посреднике, таком как воздух или вода. Это волны сжатия — растяжения (иначе говоря, уплотнения — разрежения) среды. Если речь идет о воздухе, то это означает локальные колебания атмосферного давления. Наше ухо представляет собой миниатюрный барометр, способный улавливать быстрые и ритмичные перемены давления. А у насекомых принцип действия органов слуха совершенно иной. Чтобы понять, в чем разница, нам понадобится сделать небольшое отступление и разобраться, что же такое давление на самом деле.

Если мы, к примеру, перекроем рукой выходное отверстие велосипедного насоса, то наша кожа почувствует давление как энергичный напор. В действительности же давление — это совокупность ударов, производимых тысячами молекул воздуха, которые носятся туда-сюда в случайных направлениях (этим давление отличается от ветра — там они перемещаются преимущественно в какую‑то одну сторону). Если вы направите ладонь против сильного ветра, то почувствуете нечто равнозначное давлению: бомбардировку молекулами. В замкнутом пространстве — например, внутри надутой велосипедной камеры — молекулы воздуха давят на стенки с силой, пропорциональной количеству молекул и температуре. При любой температуре выше −273°C (это самая низкая возможная температура, соответствующая полной неподвижности молекул) молекулы находятся в беспрерывном хаотичном движении, отскакивая друг от друга, как бильярдные шары. При этом сталкиваются они не только между собой, но и с внутренней стороной стенок камеры, которые "ощущают" это как давление. Кроме того, чем горячее воздух, тем стремительнее носятся молекулы (в этом и состоит смысл понятия "температура"), так что давление заданного объема воздуха при нагревании возрастает. Аналогичным образом температура определенного количества воздуха возрастает, если его сжимать, то есть увеличивать давление за счет уменьшения объема.

Звук — это волны колеблющихся изменений локального давления. Давление, скажем, в герметизированной комнате определяется общим числом находящихся в ней молекул и температурой, а эти параметры в краткосрочной перспективе неизменны. Каждый кубический сантиметр объема данной комнаты будет в среднем содержать столько же молекул, сколько и любой другой, и, следовательно, иметь такое же давление. Но это не мешает возникновению локальных колебаний. В кубическом сантиметре А может произойти кратковременное повышение давления за счет кубического сантиметра Б, если тот ненадолго поделится с ним частью своих молекул. Возросшее давление внутри А будет способствовать выталкиванию молекул обратно в Б, что приведет к восстановлению равновесия. Ветер представляет собой ровно то же самое — поток воздуха из области с высоким давлением в область низкого, — только в гораздо более крупном, географическом, масштабе. А в меньшем масштабе подобным образом возникают звуки, но в отличие от ветра их колебания туда-обратно совершаются очень быстро.

Если посреди комнаты ударить по камертону, то его вибрация потревожит ближайшие молекулы воздуха, заставляя их ударяться о своих соседок. Камертон колеблется с определенной частотой, распространяя вокруг себя волны возмущения — череду расширяющихся сфер. Каждый волновой фронт представляет собой область повышенного давления, вслед за которой располагается зона разреженного воздуха. Затем, через промежуток времени, определяемый частотой колебаний камертона, надвигается новый волновой фронт. Если где‑нибудь в комнате установить крошечный и необычайно быстродействующий барометр, то при прохождении каждого волнового фронта измерительная стрелка будет взлетать, а затем падать. Частота колебаний стрелки такого барометра равнялась бы частоте звука. Ухо позвоночных представляет собой не что иное, как быстродействующий барометр. Барабанная перепонка отклоняется туда-сюда под воздействием достигающих ее колебаний давления. Она соединена (посредством трех крохотных косточек — знаменитых молоточка, наковальни и стремечка, — обособившихся в процессе эволюции из костей задней части челюсти рептилий) со своеобразной миниатюрной "арфой наоборот", которая называется улиткой. Как и у арфы, "струны" улитки располагаются поперек каркаса, сужающегося к одному из концов. На узком конце "струны" вибрируют в резонанс с высокими звуками, а на широком — с низкими. От улитки на всем ее протяжении отходят нервы, направляющиеся к головному мозгу в строго определенном порядке, — мозг, таким образом, может различить, какой звук — высокий или низкий — колеблет барабанную перепонку.

В противоположность этому органы слуха у насекомых — не маленькие барометры, а маленькие флюгера. Они в самом деле воспринимают молекулярный поток как ветер, пусть и очень странный ветер, который, едва лишь преодолеет очень небольшое расстояние, меняет свое направление на противоположное. Расширяющийся волновой фронт, который мы ощущаем благодаря изменениям давления, представляет собой также и волну локальных перемещений молекул: они перемещаются внутрь некой конкретной области, когда давление в ней повышается, и уходят обратно, когда оно снова падает. В то время как наши с вами уши-барометры снабжены перепонкой, ограничивающей замкнутое пространство, у "ушей"-флюгеров насекомых есть либо волосок, либо же мембрана, которая отгораживает камеру, имеющую отверстие. И тот, и другая в буквальном смысле колышутся на ветру, представляющем собой ритмичное перемещение молекул туда-сюда.

Выходит, для насекомых чувствовать направление звука — обычное дело. Как любой дурак, у которого имеется флюгер, в состоянии отличить северный ветер от восточного, так и один-единственный орган слуха насекомого легко отличает колебания в направлении север — юг от колебаний по оси восток — запад. Определение направленности "встроено" в метод, используемый насекомыми для улавливания звуков. Барометры же так не умеют. Повышение давления — это просто повышение давления, с какой бы стороны молекулы ни приходили. И потому нам, позвоночным, с нашими ушами-барометрами, приходится вычислять направление звука, сопоставляя информацию, получаемую от каждого уха, — примерно так же, как мы вычисляем цвет, сопоставляя сигналы от разных типов колбочек. Мозг сравнивает громкость в одном и в другом ухе, а также отдельно — время прибытия к ним звуков (особенно отрывистых). Некоторые звуки поддаются такому сопоставлению легче, чем другие. Высота и длительность трелей сверчка подобраны так искусно, что слуху позвоночных трудно определить, откуда они исходят, однако самки сверчков, с их "ушами"-флюгерами, летят на зов прямой наводкой. Порой стрекотание сверчков даже создает иллюзию (по крайней мере, в моем мозгу позвоночного), что сверчок — в действительности сидящий неподвижно — скачет вокруг, будто зажженная петарда.

Звуки различных длин волн образуют спектр, аналогичный радуге. Звуковую радугу тоже можно расплести — собственно, это и позволяет нам хоть как‑то ориентироваться в звуках. Если наше восприятие цвета представляет собой ярлыки, присвоенные мозгом свету с различными длинами волн, то в случае звуков точно такими же метками, используемыми мозгом для собственного удобства, служат значения высоты звука. Однако звуки характеризуются далеко не только высотой, и вот тут‑то расплетание радуги выходит на передний план.

Камертон и стеклянная гармоника (инструмент, пользовавшийся благосклонностью Моцарта; состоит из тонких стеклянных чаш, которые настраиваются добавлением в них нужного количества воды, звук извлекается проведением смоченного пальца по ободку) издают кристально чистые звуки. Физики называют такие колебания синусоидальными, или гармоническими. Синусоидальные волны — это простейшая разновидность волн, своего рода идеальная абстракция. Плавные изгибы, змейкой пробегающие по веревке, если взмахивать одним ее концом, — это колебания, более или менее близкие к гармоническим, хотя частота их, разумеется, намного ниже, чем у звуковых волн. Большинство звуков — не простые синусоидальные волны: обычно они, как мы вскоре увидим, более сложные и менее плавные. А пока поговорим о камертоне и стеклянной гармонике и о производимых ими гладко изогнутых волнах перепадов давления — волнах, что разбегаются от своего источника расширяющимися концентрическими сферами. Ухо-барометр, находясь в некой определенной точке, фиксирует плавное возрастание давления, а затем плавное понижение — ритмичные колебания без каких‑либо изломов или вывертов на графике. Каждый раз, когда частота волн удваивается (или вдвое уменьшается их длина, что одно и то же), мы слышим скачок на одну октаву. Очень малые частоты — самые низкие ноты органа — проходят через все наше тело и едва воспринимаются на слух. К очень высоким частотам люди (особенно пожилые) невосприимчивы, зато летучие мыши их прекрасно слышат и используют в форме эха, чтобы ориентироваться в пространстве. Это одна из самых захватывающих тем во всем естествознании, но я уже посвятил ей целую главу в "Слепом часовщике", так что удержусь от искушения и не буду углубляться.

Однако, если оставить в стороне камертоны и стеклянные гармоники, чистые синусоидальные волны — это по большому счету математическая абстракция. В реальности звуки, как правило, представляют собой сложносоставную мешанину, где, поверьте, есть что расплетать. Наш головной мозг занимается этим безо всяких усилий и с поразительной эффективностью. То, что нашему математическому пониманию поддается с большим трудом, грубо и не полностью, наши уши без малейшей трудности расплетают — а мозг сплетает заново — с раннего детства.

Представьте, что мы ударили по камертону — и он завибрировал с частотой 440 колебаний в секунду, или 440 герц (Гц). Мы услышим чистый звук — ля первой октавы. В чем разница между этим звуком и той же самой нотой, взятой на скрипке? А на кларнете? А на гобое или флейте? Ответ заключается в том, что в звучании каждого музыкального инструмента содержатся волновые примеси, частоты которых кратны основной, или фундаментальной, частоте. Любой инструмент, играющий ля первой октавы, большую часть звуковой энергии высвобождает в виде волн с фундаментальной частотой 440 Гц, на которые, однако, накладываются незначительные колебания с частотами 880 Гц, 1320 Гц и так далее. Такие призвуки называются гармониками, хотя это слово может сбивать с толку, поскольку понятие "гармония" относится к аккордам — сочетаниям из нескольких различимых нами нот. "Одиночная" нота, взятая на трубе, в действительности представляет собой смесь гармоник1 — определенную смесь, которая является своего рода уникальной "подписью", отличающей трубу от, к примеру, играющей "ту же" ноту скрипки (со своей, свойственной только скрипке смесью гармоник). Есть и дополнительные усложнения, которые касаются начала звучания, — например, дребезжание от дрожания губ, знаменующее вступление трубы, или характерный посвист при касании струны смычком скрипки, — но я ими пренебрегу.

Если отбросить эти нюансы, у звука есть характерный тембр, окраска, делающая его трубным (или скрипичным, или каким угодно еще). Можно продемонстрировать, что тон любого музыкального инструмента, кажущийся нам одиночным, — это конструкция, сплетаемая нашим мозгом из совокупности различных синусоидальных волн. Сделаем следующее: выяснив, какие колебания участвуют в формировании, скажем, звука трубы, отберем соответствующие чистые, "камертонные" звуки и заставим их звучать одновременно. Вначале в течение недолгого времени вы будете слышать отдельные ноты — как бы аккорд из нескольких камертонов. А затем эти ноты каким‑то сверхъестественным образом "схлопнутся" воедино, "камертоны" исчезнут — и вы услышите только то, что Китс назвал "пронзающими слух руладами трубачей"2, звенящими на высоте основного тона. Другая комбинация "штрихкодовых" частот даст звучание кларнета, и вы снова сможете какое‑то мгновение воспринимать их как отдельные "камертоны", пока ваш мозг не сведет их воедино в иллюзию характерного "хрустального" тембра этого инструмента. Свой собственный "звуковой штрихкод" есть и у скрипки... Ну и так далее.

Так вот, если вы посмотрите на график колебаний давления, возникающих, когда на скрипке берут какую‑либо ноту, то увидите замысловатую извилистую кривую, которая повторяет свой рисунок с периодичностью, соответствующей фундаментальной частоте, но с дополнительными мелкими изгибами от более высоких наложенных частот. Дело в том, что разные синусоидальные волны, составляющие звук скрипки, суммировались и образовали эту сложную извилистую кривую. Можно написать компьютерную программу, раскладывающую любую запутанную, повторяющую свой узор кривую обратно на составляющие ее чистые волны — те отдельные синусоиды, из совокупности которых и возник этот замысловатый рисунок. По-видимому, слушая какой‑либо музыкальный инструмент, вы производите нечто аналогичное подобным расчетам: сперва ухо расплетает звук на синусоидальные волновые компоненты, которые мозг затем снова сплетает воедино и навешивает подходящий ярлык — "труба", "гобой" или еще что‑нибудь.

Однако наши способности к бессознательному расплетанию и сплетанию в действительности даже еще замечательнее. Вообразите, что происходит, когда вы слушаете целый оркестр. Представьте себе, как поверх звучания сотни инструментов сосед шепчет вам на ухо свои высокоумные критические замечания, кто‑то при этом кашляет, а кто‑то сзади — о ужас! — разворачивает шоколадку. Все эти звуки одновременно заставляют вибрировать вашу барабанную перепонку, сливаясь в единую волну перепадов давления, имеющую очень сложную форму. Мы знаем, что волна одна, поскольку весь оркестр и все посторонние шумы можно перевести в одну-единственную волнообразную бороздку на грампластинке или намагниченную с переменной интенсивностью дорожку магнитного порошка на пленке. Весь набор колебаний суммируется в одну извилистую кривую зависимости давления воздуха от времени, регистрируемую нашей барабанной перепонкой. Невероятно, но мозгу удается отделить шуршание фольги от шепота, кашель от хлопанья дверей и все инструменты оркестра друг от друга. Такое мастерство расплетания и сплетания, или анализа и синтеза, лежит почти за гранью правдоподобия, однако же мы совершаем эти виртуозные трюки не задумываясь, безо всяких усилий. Еще поразительнее летучие мыши: анализируя прерывистые очереди отраженных звуков, они воссоздают в своем мозге подробную и быстро меняющуюся трехмерную картину окружающего мира, включающую в себя и насекомых, которых они ловят на лету. Они даже умудряются не путать собственное эхо с эхом других летучих мышей.

Математический метод разложения сложных волнообразных кривых на синусоиды, которые затем снова можно объединить в исходную причудливую кривую, называется преобразованием Фурье — по имени Жозефа Фурье, французского математика XIX века. Этот метод подходит не только для звуковых волн (сам Фурье разработал его в совершенно других целях), но для любых периодических процессов — вовсе не обязательно таких же скоростных, как звук, или ультраскоростных, как свет. Мы можем рассматривать анализ Фурье как математический прием, применимый для расплетания "радуг" в тех случаях, когда колебания, образующие спектр, медленны по сравнению со световыми.

<...>